Environmental impact tracking for AI inference providers
{
"service": "InferenceLatency.com",
"endpoint": "/efficiency",
"timestamp": "2025-10-26T06:25:00.617162Z",
"efficiency_analysis": {
"providers_analyzed": 7,
"most_efficient_provider": "Together AI",
"least_efficient_provider": "Claude",
"average_energy_wh": 0.3486,
"average_carbon_g": 0.1115,
"grid_carbon_intensity": 320
},
"provider_efficiency": [
{
"provider": "Together AI",
"model": "Llama3.1-8B-Turbo",
"latency_ms": 213,
"energy_wh_est": 0.35,
"carbon_g_est": 0.112,
"carbon_per_1k_tokens": 112.0,
"efficiency_score": 1.34,
"grid_gco2_per_kwh": 320,
"methodology": "estimated"
},
{
"provider": "Fireworks AI",
"model": "Llama3.1-8B",
"latency_ms": 233,
"energy_wh_est": 0.35,
"carbon_g_est": 0.112,
"carbon_per_1k_tokens": 112.0,
"efficiency_score": 1.23,
"grid_gco2_per_kwh": 320,
"methodology": "estimated"
},
{
"provider": "Google Gemini",
"model": "Gemini-2.0-Flash",
"latency_ms": 365,
"energy_wh_est": 0.24,
"carbon_g_est": 0.0768,
"carbon_per_1k_tokens": 76.8,
"efficiency_score": 1.14,
"grid_gco2_per_kwh": 320,
"methodology": "estimated"
},
{
"provider": "OpenAI",
"model": "GPT-4o",
"latency_ms": 351,
"energy_wh_est": 0.4,
"carbon_g_est": 0.128,
"carbon_per_1k_tokens": 128.0,
"efficiency_score": 0.71,
"grid_gco2_per_kwh": 320,
"methodology": "estimated"
},
{
"provider": "OpenRouter",
"model": "Mistral",
"latency_ms": 796,
"energy_wh_est": 0.35,
"carbon_g_est": 0.112,
"carbon_per_1k_tokens": 112.0,
"efficiency_score": 0.36,
"grid_gco2_per_kwh": 320,
"methodology": "estimated"
},
{
"provider": "Groq",
"model": "llama-3.1-8b-instant",
"latency_ms": 3650,
"energy_wh_est": 0.35,
"carbon_g_est": 0.112,
"carbon_per_1k_tokens": 112.0,
"efficiency_score": 0.08,
"grid_gco2_per_kwh": 320,
"methodology": "estimated"
},
{
"provider": "Claude",
"model": "Claude Sonnet 4",
"latency_ms": 3065,
"energy_wh_est": 0.4,
"carbon_g_est": 0.128,
"carbon_per_1k_tokens": 128.0,
"efficiency_score": 0.08,
"grid_gco2_per_kwh": 320,
"methodology": "estimated"
}
],
"methodology": {
"energy_source": "vendor_disclosures_and_estimates",
"carbon_calculation": "(energy_wh / 1000) * grid_gco2_per_kwh",
"grid_intensity_source": "global_average",
"scope": "online_inference_only",
"accuracy_note": "Estimates based on available vendor data and industry benchmarks"
},
"sustainability_insights": {
"greenest_choice": "Together AI",
"carbon_savings_potential": "Up to 16.0g CO₂e per 1k inferences",
"recommendation": "Choose providers with lower energy consumption for high-volume inference workloads"
}
}